

Kevin Knight SVP, Renewables Underwriting GE Energy Financial Services

January 29, 2019 UTCLE – Renewable Energy Law

RePower Overview

- What is RePowering?
- Benefits
- Results to date

Overview

(ge)

- Repowering : Retrofit vs. "Full scrape"
- Conversion of legacy turbines → improve output, reliability and extend life GE examples:

Legacy Unit	Repowered Configuration Options		
1.5 S (70.5m rotor)	1.5/1.62 (77m, 82.5m, or 91m rotor)		
1.5 SLE (77m rotor)	1.5/1.62 (87m or 91m rotor)		
1.5 XLE (82.5m rotor)	1.5/1.62 (91m rotor)		
Clipper C96-2.5 (96m rotor)	GE 2.5 (116m rotor)		

- **Basis:** leverage existing current mechanical configurations (1.x and 2.x platforms)
- **Re-use:** Components evaluated to new wind conditions & 20 years of additional life from repower COD: Towers, Foundation, BOP and existing siting, other
- **Replace**: Components being used in other GE new unit designs

Not to be copied, distributed, or reproduced without prior approval.

3

Scope of replaced and reused components

Example scope based on 1.5 SLE	Component	Re- Use	Replace	Warranty	_ Description
Repower Cased on 1.5 SEL	Blade		\checkmark	√	LM42 Blade Design
	Pitch bearing		×	~	AR500, Gleitmo Pitch Bearing
	Pitch system		~	~	Non-ESS 575V GE Pitch System w/ Spline
	Hub		\checkmark	\checkmark	Current 1.85-87 Hub
	Main shaft		\checkmark	\checkmark	Current 1.85-87 Main Shaft
	Main bearing		√	~	Current 1.85-87 Main Bearing
	Gearbox		\checkmark	\checkmark	1.6-100 GBX with Non-ESS Auxiliaries
	Flex Coupling		✓	~	Current 1.85-87 Coupling
	Slipring		\checkmark	\checkmark	Non-ESS compatible slip ring
	Bedplate	√			No change to existing component
	Gen Frame		1	~	Modified gen frame with shear plates
IEC 2S Conditions	Yaw system	\checkmark			No change to existing component
V _{avg} (m/s) 8.5	Nacelle	V			No change to existing component
CTI (% @ 15 16	Тор Вох	×		New IO	Retrofit Kit for compatibility with GE Pitch
m/s)	Tower	V			No change to existing component
Density (kg/m ³) 1.14	DTA	×			On site Upgrade/Refurbishment
V _{ref} (m/s) 40	Generator		\checkmark	\checkmark	On site refurbishment kit
Shear 0.2	Electrical Power Path	×			No change to existing component
Not to b	Controls HW	×	1	~	Upgrade to MC205
	Controlo SW				New SW to have equivalent capability of the MK6e GEN1

Find the full text of this and thousands of other resources from leading experts in dozens of legal practice areas in the <u>UT Law CLE eLibrary (utcle.org/elibrary)</u>

Title search: Repowering: understanding technical, tax and contractual considerations in repowering and how they impact availability of financing

Also available as part of the eCourse

<u>Recent Developments in Wind Energy: Wind Generation in SPP and Repowering</u> <u>Wind Projects</u>

First appeared as part of the conference materials for the 2019 Renewable Energy Law session "Repowering Wind Projects"