Develop a Winning Case Strategy

1

Pressure function in the fluid $P(x,y,z) = \rho g(H-y)$ $\overrightarrow{dF} = \text{Force exerted on the body by the fluid at the infinitesimal surface area } \overrightarrow{dA}$ Let $\overrightarrow{dF_y}$ be the y-component of \overrightarrow{dF} and $\overrightarrow{P} = \rho g(H-y)\hat{j}$ So, $\overrightarrow{dF_y} = -(\overrightarrow{dA} \cdot \overrightarrow{P})\hat{j}$ Magnitude of net buoyant force $= \oint_A ||\overrightarrow{dF_y}||$ $= \oint_A -(\overrightarrow{dA} \cdot \overrightarrow{P})$ $= \oint_A (-\overrightarrow{P}) \cdot \overrightarrow{dA}$ $= \oint_V \nabla \cdot (-\overrightarrow{P}) d\tau$ (Divergence Theorem) $= \oint_V (\nabla \cdot (-\rho g(H-y)\hat{j})) d\tau$ $= \oint_V \rho g d\tau$ $= \rho g V$ = weight of displaced fluid

Find the full text of this and thousands of other resources from leading experts in dozens of legal practice areas in the <u>UT Law CLE eLibrary (utcle.org/elibrary)</u>

Title search: Developing a Winning Case Strategy

Also available as part of the eCourse 2019 Winning at Deposition eConference

First appeared as part of the conference materials for the 2019 Winning at Deposition: Skills and Strategy session "Developing a Winning Strategy"